1,466 research outputs found

    Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    Get PDF
    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO(2), NaNO(3), NaClO(4), and NaIO(4). The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f(X(-))) and their correlation with ion properties. Although no correlation exists between f(X(-)) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(X(-)), dehydration free-energy ΔG(dehyd), and polarizability α, follows the order: R(X(-))(-2) \u3e R(X(-))(-1) \u3e R(X(-)) \u3e ΔG(dehyd) \u3e α. The same pure physical process is observed in H(2)O and D(2)O. The factor f(X(-)) does not change with pH (6.8-8.6), counterion (Li(+), Na(+), K(+), and Cs(+)) substitution effects, or solvent polarity changes in methanol- and ethanol-water mixtures (0 ≤ x(H(2)O) ≤ 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I(-) on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I(-) \u3c Br(-) \u3c Cl(-) over the oceanic boundary layer due to concentration effects in sea spray aerosol formation

    The use of ecosystem-based adaptation practices by smallholder farmers in Central America

    Get PDF
    There is growing interest in promoting the use of Ecosystem-based Adaptation (EbA) practices to help smallholder farmers adapt to climate change, however there is limited information on how commonly these practices are used by smallholder farmers and what factors influence their use. Using participatory mapping and field surveys, we examined the prevalence and characteristics of EbA practices on 300 smallholder coffee and maize farmers in six landscapes in Central America and explored the socioeconomic and biophysical factors associated with their use. The prevalence of individual EbA practices varied across smallholder farms. Common EbA practices included live fences, home gardens, shade trees in coffee plantations, and dispersed trees in maize fields. We found a mean of 3.8 EbA practices per farm. Factors that were correlated with the total number of EbA practices on farms included the mean area of coffee plantations, farmer age, farmer experience, the farm type and the landscape in which farms were located. Factors associated with the presence or characteristics of individual EbA practices included the size of coffee plantations, farmer experience, farmer education, land tenure, landscape and farm type. Our analysis suggests that many smallholder farmers in Central America are already using certain EbA practices, but there is still scope for greater implementation. Policy makers, donors and technicians can encourage the broader use of EbA by smallholder farmers by facilitating farmer-to-farmer exchanges to share knowledge on EbA implementation, assessing the effectiveness of EbA practices in delivering adaptation benefits, and tailoring EbA policies and programs for smallholder farmers in different socioeconomic and biophysical contexts. (Résumé d'auteur

    Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of EGFR kinase domain mutations in a subset of NSCLC patients correlates with the response to treatment with the EGFR tyrosine kinase inhibitors gefitinib and erlotinib. Although most EGFR mutations detected are short deletions in exon 19 or the L858R point mutation in exon 21, more than 75 different EGFR kinase domain residues have been reported to be altered in NSCLC patients. The phenotypical consequences of different EGFR mutations may vary dramatically, but the majority of uncommon EGFR mutations have never been functionally evaluated.</p> <p>Results</p> <p>We demonstrate that the relative kinase activity and erlotinib sensitivity of different EGFR mutants can be readily evaluated using transfection of an YFP-tagged fragment of the EGFR intracellular domain (YFP-EGFR-ICD), followed by immunofluorescence microscopy analysis. Using this assay, we show that the exon 20 insertions Ins770SVD and Ins774HV confer increased kinase activity, but no erlotinib sensitivity. We also show that, in contrast to the common L858R mutation, the uncommon exon 21 point mutations P848L and A859T appear to behave like functionally silent polymorphisms.</p> <p>Conclusion</p> <p>The ability to rapidly obtain functional information on EGFR variants of unknown relevance using the YFP-EGFR-ICD assay might prove important in the future for the management of NSCLC patients bearing uncommon EGFR mutations. In addition, our assay may be used to determine the response of resistant EGFR mutants to novel second-generation TKIs.</p

    Bioregenerative life support systems for microgravity

    Get PDF
    NASA's Controlled Ecological Life Support System (CELSS) project centers on growing plants and recycling wastes in space. The current version of the biomass production chamber (BPC) uses a hydroponic system for nutrient delivery. To optimize plant growth and conserve system resources, the content of the nutrient solution which feeds the plants must be constantly monitored. The macro-nutrients (greater than ten ppm) in the solution include nitrogen, phosphorous, potassium, calcium, magnesium, and sulphur; the micro-nutrients (less than ten ppm) include iron, copper, manganese, zinc, and boron. The goal of this project is to construct a computer-controlled system of ion detectors that will accurately measure the concentrations of several necessary ions in solution. The project focuses on the use of a sensor array to eliminate problems of interference and temperature dependence

    Differential Immune-Reactivity and Subcellular Distribution Reveal the Multifunctional Character of Profilin in Pollen as Major Effect of Sequences Polymorphism

    Get PDF
    Trabajo presentado al Annual Meeting of the American Society of Agronomy and Crop Science Society and Soil Science Society of America, celebrado en Cincinnati (USA) del 21 al 24 de octubre de 2012.Profilin, one of the major allergen (Ole e 2) of olive (Olea europaea L.) pollen, are broadly distributed actin-monomer-binding proteins (ABP). They display a major regulatory role in actin cytoskeleton dynamics, driving cell morphogenesis, sexual reproduction, and translating signals into cellular responses to different environmental stresses. Plants exhibit multiple profilin isoforms w ith distinctive biochemical properties, and differentially regulated. How ever, it is still an open question w hether these profilin isoforms, generated by multiple gene sequence polymorphism, are functionally different, as well as the role of that polymorphism in pollen allergy. Particularly, in differential epitopes generation, profilin isoforms sensitization and cross-reactivity among cultivars, and even among species. In the present study, w e have used mature pollen from olive, birch, hazel, timothy-grass, and maize, in addition to olive germinating pollen and seeds, w ith the aim to analyze the immune-reactivity and subcellular localization of profilin by using polyclonal and specific isoforms antibodies against olive and maize profilins. The results show ed immune-reactivity differences betw een the five species analyzed, betw een olive cultivars, as w ell as between reproductive and vegetative profilins. Furthermore, the existence of different profilin isoforms w as revealed along pollen germination stages. A differential subcellular distribution of profilin isoforms w as found in olive pollen. They w ere localized in the nucleus, pollen aperture regions, pollen and tube w alls and pollen tip, in addition to a general cytoplasmic distribution, in comparison to controls. Data suggest that profilin family might contain numerous functionally distinctive isoforms, spatial-temporal differentially expressed and regulated during vegetative development, pollen maturation and pollen tube grow th. Furthermore, differential immune-reactivity revealed in the study might point out the involvement of common shared and specific epitopes, generated by sequence polymorphism, in differential olive pollen cultivar sensitization of allergenic patients, and cross-reaction to pollen from different species.This study was supported by the following European Regional Development Fund cofinanced grants: MCINN BFU 2004-00601/BFI, BFU 2008-00629, BFU2011-22779, CICE (Junta de Andalucía) P2010-CVI15767, P2010-AGR6274, P2011-CVI-7487, P2011-CVI-7487, and by the coordinated project Spain/Germany MEC HA2004-0094.Peer reviewe

    Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death

    Get PDF
    Altres ajuts: This study received funding from the Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas' intramural program (2014/01 and 2017/02), Galician Government (Xunta de Galicia, Consellería de Educación; GRC2014/002), Navarra Government (Departamento de Salud; 046-2017), and Fondo Europeo de Desarrollo Regional (Regional European Development Fund).The loss of dopaminergic neurons and α-synuclein accumulation are major hallmarks of Parkinson's disease (PD), and it has been suggested that a major mechanism of α-synuclein toxicity is microglial activation. The lack of animal models that properly reproduce PD, and particularly the underlying synucleinopathy, has hampered the clarification of PD mechanisms and the development of effective therapies. Here, we used neurospecific adeno-associated viral vectors serotype 9 coding for either the wild-type or mutated forms of human alpha-synuclein (WT and SynA53T, respectively) under the control of a synapsin promoter to further induce a marked dopaminergic neuron loss together with an important microglial neuroinflammatory response. Overexpression of neuronal alpha-synuclein led to increased expression of angiotensin type 1 receptors and NADPH oxidase activity, together with a marked increase in the number of OX-6-positive microglial cells and expression of markers of phagocytic activity (CD68) and classical pro-inflammatory/M1 microglial phenotype markers such as inducible nitric oxide synthase, tumor necrosis factor alpha, interleukin-1β, and IL-6. Moreover, a significant decrease in the expression of markers of immunoregulatory/M2 microglial phenotype such as the enzyme arginase-1 was constantly observed. Interestingly, alpha-synuclein-induced changes in microglial phenotype markers and dopaminergic neuron death were inhibited by simultaneous treatment with the angiotensin type 1 blockers candesartan or telmisartan. Our results suggest the repurposing of candesartan and telmisartan as a neuroprotective strategy for PD
    • …
    corecore